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Introduction

The Computerized Cavendish Balance is designed to allow data to be taken with a computer,
or with an optical lever arrangement. The period of the unit depends on the length of the
tungsten wire and will vary from approximately 3%z to 4}, minutes. The electronics used to
collect data are on the PCB board located inside the unit. They are designed such that the
pendulous mode (to first order) is rejected. Thus the TEL-RP2111 Computerized Cavendish
Balance is fairly immune to environmental vibrations. (This does not mean however, that you
can bump the table when taking data or be reckless when moving the lead masses!)

The experiment can be completed using a dynamic data acquisition method in one (long)
laboratory period. (This does not include replacing the tungsten wire if that is necessary.) Most
of this time will be spent setting up and calibrating the unit. Setting up includes forcing the
swinging masses to swing near the centerline of the Cavendish apparatus. Dampening the swing
is required. If the tungsten wire needs to be replaced, we recommend that this task be performed
before the laboratory begins.

The actual taking of data can be accomplished in a fairly short time by driving the unit in
resonance with the boom oscillations and then allowing the boom to undergo free decay. A
rough value for G can be obtained in as little as 3 oscillations, or about 15 minutes. Data can also
be taken using the more traditional static method. After moving the large masses, the boom
settles to its final value in about one hour.

Tungsten Wire
Vertical Support Rods -
- Frame
- Centering Pin
I-nte['n,al BOOm B
Capacitive Sensor s
" External Boom



Connection

Before the unit can be used, the accompanying software must be installed and the unit must be
connected to the computer.
1. Insert the Cavendish Balance Software CD into your computer's CD-ROM drive.

2. Open windows explorer and navigate to your CD drive. Double click on “setup.exe” to
start the install program. Follow the prompts until all software has been completely
installed.

3. Connect the supplied USB cable to an available USB port on your computer and to the
Cavendish Balance unit.

4, Start the Cavendish Balance program. If you have completed the installation correctly, you
should see a value in milliradians in the upper left hand corner of the window,

For instructions on using the software, see Appendix 1, page 21.

Calibration

The unit can be calibrated using either of two methods. The simple method uses the uniform
geometry of the unit to roughly calibrate the unit. The standard deviation for calibration with
this method is about 5% of the full range the boom travels. The unit can also be calibrated using
a laser to form an optical lever. This method can be quite accurate if proper care is taken.

SIMPLE CALIBRATION

1. Attach the boom to the solid rod. Attach the boom at the extreme end of the mounting hole.
This allows the boom to be positioned as precisely as possible. See Figure 2 for detail.

Figure 2



2. Install the boom and rod assembly into the balance. The boom should be centered
vertically between the circuit boards, and should also be parallel to the circuit boards.

3. Insert both pieces of glass into the balance.
4. Connect the Cavendish balance to your computer.

5. In the Cavendish program, click on “Setup” and make sure that “Y maximum” is set to 70
mrad and “Y minimum” is set to -70 mrad. Note: the value of +/- 70 mrad had been
determined experimentally through repeated applications of this calibration method in
conjunction with an optical lever.

6. Carefully rotate the rod as far as it will go counterclockwise. Be sure that it does not spring
back when you release it.

7. In the Cavendish program, in the setup window, click the “align left border” button. On the
following dialog boxes, click yes and then yes again.

8. Carefully rotate the rod as far as it will go clockwise. Be sure that it does not spring back
when you release it.

9. In the Cavendish program, in the setup window, click the “align right border” button. On
the following dialog boxes, click yes and then yes again.

10.Click “OK” in the setup box. Your Cavendish balance is now ready to use.



OPTICAL LEVER CALIBRATION METHOD

1. Attach the boom to the solid rod. Attach the boom at the extreme end of the mounting hole.

2. Install the boom and rod assembly into the balance. The boom should be centered
vertically between the circuit boards, and should also be parallel to the circuit boards.

3. Place the balance a distance L (at least 2 m) from a flat surface, such as a wall, as shown in
figure 3. Arrange the laser so that it is at the same height as the mirror on the rod
supporting the boom. Tape a piece of paper onto the wall so that you will be able to mark
the position of the laser beam. This piece of paper should be approximately aligned such
that the center of the paper is horizontally aligned with the balance unit.

4. Mark the initial position of the laser beam on the paper. Note and record the reading on the
computer. Displace the boom by some small amount, ideally about 20mrad, and mark the
laser's new position. Again, note and record the computerized reading. Find the distance
between the two marks on your paper. This distance is S. Also calculate the difference
between the computerized readings. Call this angle Beomp.

5. If you have followed these instructions, we may approximate the wall as the edge of a
circle. Hence, O,s=S/(2L) (The reflection of the laser introduces the 2)

6. If there is a concern that these approximations may not be valid (because the boom has been
rotated through a large angle, or the mirror and the two laser spots do not form an
approximately isosceles triangle) then 8 can be calculated by using the law of cosines. Ifl
and 1, are the distance from each laser spot to the mirror, then Gy=arccos((l)* + 1> — SH(2*
L*L)/2. (See figure 3)

7. When analyzing data, multiply all angle values by the calibration constant Giuser/Gcomp.
Alternatively, you may also multiply the “Y maximum” and “Y minimum” values by the
same calibration constant and insert new value into the Setup menu. This ratio should be
unchanged even when switching between a solid rod and tungsten wire.
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REPLACING THE TUNGSTEN WIRE

The tungsten wire is only 25 microns in diameter and fairly fragile, therefore extreme care needs
to be taken when tying this wire to the support rods (see figure 4). Carefully unroll 1 1/2 - 2 feet
of wire. Tie the top wire first. Unscrew the screw from the top support just enough to wrap the
wire around it. Take the free end of the wire and wrap around the screw. Be sure you wrap in
the same direction the screw will be tightened. Make sure the other end of the wire is coming
straight down from the top support before you tighten the screw. Now that the wire is in the
tight position, tighten the screw and that’s it. Repeat for the bottom support rod. Once the
bottom screw is tightened, cut the wire to be sure it doesn't contact and other parts of the balance.

It is imperative that you do not have any kinks in the wire.

This new design has made the process of tying the wire much less frustrating. However, it may
be still be quicker and easier to find a young assistant with good hand eye coordination lo lie the

wire instead of tying it yourself.

Figure 4



CALCULATING G

The TEL RP2111 Computerized Cavendish Balance can be used to calculate G in two ways.
The driven resonance method can be used to calculate G in about a half hour, while the more

traditional static method can be completed in about 2 hours.

Driven Resonance Method

The driven resonance method of determining G has the advantage that the experimental data
can be collected in a short time since one does not have to wait for the oscillations of the balance
to damp away. Measurements can begin at any time the balance reaches a turning point. The
large balls are rotated back and forth between the two extreme positions so that the force of
gravity between the large balls and the boom is always doing positive work on the balance, and
the amplitude builds up until the energy loss from damping is equal to the work done by the
gravitational force. When turning the large spheres, it is important to stop them just before they
contact the glass. Thus, determining G requires knowledge of the damping coefficient of the
balance. This is most easily determined by measuring the amplitude decay as the balance is

freely oscillating.

When freely oscillating, the angle of the boom as a function of time is given by

B(t) = 0 + A Pt cos(at +5) (1)

where

8 = equilibrium angle of the balance,

A = oscillation amplitude at t =0,

bl = time for the amplitude to decay to !/e of the initial value,
w1 = oscillation frequency; (012 = woz-bz, Wy =27/T;

0, = oscillation frequency in the absence of damping; 0)02 =K/,

T = oscillation period
K = torsion constant of the suspension fiber,
1 = moment of inertia of the boom,

8 = phase of the oscillation at the time t =0,
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and where we have made the standard assumption that the damping torque is directly
proportional to the angular velocity of the boom (We ignore damping due to internal friction in
the tungsten wire. For more information, see Randal Peters' contributions in ch. 20 and 21 of
CRC's Vibration and Shock Handbook, ed. Clarence deSilva, 2005). Figure 6 shows for a 50
minute time interval the measured displacement of the balance in free oscillation along with a
least-squares fit to the function given in Equation 1.

Since the large masses are rotated at turning points of the oscillation, it is convenient to define
the zero of time to occur at a turning point. In this case, the phase & is specified by the
requirement d8/dt=0 at t=0, and Equation I can be rewritten as

B(t) = 0, + A &Pt [cos(wyt )+blw; sin(w1t)]. )

In what follows, we will concentrate on the turning points of the motion.

11



Figure 5: Cavendish Balance Free Decay
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Let t, be the time of the nth turning point (t;=(n-1)T/2, the first turning point occurs at t=0), and
let 6, be the boom angle at the nth turning point, 8, = 6(t,). The initial amplitude A is then just

01-8.. From Equation 2 we find

0, = B + (81-8e) (e (" 1PT/2) (pyn- 3)

-bT/2

since W1t = (n-1)m. The factor e occurs so often in the formulas below that it 1s

convenient to define a separate symbol for it; let’s call it x (xze'bT/ 2). With this definition,

Equation 3 becomes

By -0 = (20" (81 - 69) 4
which can also be written in the form:

(Op+1 - Be) = -x (B - Be) (5)
In free decay, x can be measured using any two adjacent turning points:

x=-(811 - 0)/(8, - 6c). (6)

12



One drawback to using Equation 6 to measure x is that it requires knowledge of the
equilibrium angle, 8,. By using three adjacent turning points, only differences in the turning

point angles need be measured. Using Equation 5 twice, we find

x =-(8p42 - O0+1)(Op+1 - Op). (7)

Equation 7 is a very useful method to determine x. To reduce the measurement error on X, more
turning points can be measured. If an odd number N of adjacent turning points are measured,
multiple use of Equation 5 gives

x=1-(01-67)/(01-62103-04+...-0N_1)- &)

NOTE: For mechanical oscillators in free decay, the positive and negative turning points can
correspond to measurably different decay constants. Therefore, to improve accuracy in general,
it is recommended that the results from Eq. 8 be averaged with the following:

X' =1 - (02-0n-1)/(02-04+04-05+...-ON-2) (8a)

If the measurement error on each turning point is 88, the error on x can be shown to be
8x = 80 (1-x)[(N-1)(1-x)? + 2x]"%/|0 -0y, 9)

which has a broad minimum beginning around N=11 for x values typical of the balance.

Now let’s consider the balance response to a resonant square-wave drive. We shall assume
the gravitational torque exerted by the large masses on the boom when they are rotated from the
center to the extreme positions is a constant, i.e. it is not appreciably changed by the small
movements of the boom. With this assumption, the effect of the large masses is just to change
the equilibrium angle of the boom. Before the drive is applied, the balance will either be at rest
at the equilibrium angle O, or else will be freely oscillating,

13



Figure 6: Driven Cavendish Balance
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Let +8y be the change in the equilibrium angle when the large masses are rotated from the
center position to either of the (symmetrically located) extreme positions. Suppose at time t=0 (a
turning point if the balance is oscillating) the large masses are rotated to the extreme position

where the new equilibrium angle is 8,-6p. Then from Equation 2, the time dependence of the
boom angle 1s

8(1) = (8-6p) + (61-(0¢-0Dp)) e bt [cos(mt ) +b/®) sin(wt)] (10)

where 07 is the angle of the boom at t=0 (the first turning point). The boom angle at the second
turning point is

0 = (8-8p) -x (81-(-6p)). (11)

At the second turning point (t=T/2) the large masses are quickly rotated so that the new balance
equilibrium angle becomes 8,+8p). Thus, the boom angle at the third turning point (=T) is

03 = (8+0p) X (82-(B+0D)). (12)

14



Each pair of adjacent turning points can be used to measure 6y from which the gravitational
constant G can be determined. It can be seen from Equations 11 and 12 that the solution for Op

in terms of the two turning points 8, and 0,4 is

Op = (-DP[(Bp+1 -Be)+x (B -6)1/(1+x). ' (13)

The equilibrium angle 8, can be eliminated from the measurement process if the results of two

measurements of Oy using three adjacent turning points are averaged:

Op = (-1)[x 6 + (1-x) B4 -6 421/ [2 (14x)]. (14)
To reduce errors, the results of an odd number N of adjacent turning points can be averaged:
Op = [(1-x)(81-67163-04+...87) 01+ x ON]/ [(N-1)(1+x)] (15)

where the error on 6y is has contributions from the measurement error on the

individual tuming points (BBDB) and the error on x (SGDX):

80p = [ aeDez +80p 21" (16a)
80p,, = 80 [(N-1)(1-x)2 + 2x]Y2/[(N-1)(1+x)] (16b)
86, = 8x [2(81-62+03-..-ON.1) T (ON-O}/ [(N-1)(1+%)%] (16¢)

assuming the measurements errors on the individual turning points are uncorrelated and equal to
9.

The minimum time required to collect the data needed to determine G is very short. Using
Equation 7 to determine x and Equation 14 to determine 6, only 3 adjacent turning points when

the balance is being resonantly driven and 3 adjacent turning points when the balance is in free
decay need to be measured. Each set of 3 measurements require the balance to oscillate through
one complete cycle which, depending on the length of the tungsten fiber, is about 4 minutes or
less. If more accuracy is desired, any odd number N of adjacent data points can be used to
determine x and py using Equations 8 and 14, although 11 adjacent data points is optimum.

(See equation 9, page 12)

15



Static Method

The static method is conceptually much simpler than the driven resonance method. Opy can be

measured directly. Simply swing the large lead masses as far as they will go in one direction.
Once the boom has settled down (about an hour), turn the large lead masses as far as they will go
in the other direction. Once the boom has settled again, you can simply read off the two
equilibrium angles. The difference between theses angles is equal to 20.

Determining G

Once 8y has been measured through either the static or dynamic method, the

gravitational constant G can be determined.

The torque exerted by the gravitational force of the large balls on the boom is balanced by a
restoring torque of the tungsten fiber when it is rotated by the angle 6py. The torque can be

easily calculated if the following assumptions are made:

i. The balance is symmetric about the axis of rotation: the separation between the large and
small masses is the same for both arms and for both equilibrium positions, the two large
masses are identical, and the two small masses are identical.

ii. The mass of the aluminum beam is small and can be ignored.

iii. The positions of the large masses in both extreme positions is such that the gravitational force
of the large masses on the small spheres is at right angles to the boom and in the plane
perpendicular to the torsion fiber.

With these assumptions the gravitational torque T,, of the large spheres on the nearby spheres is
1,=2GMm d/R? (17)

~ where
M = mass of each large sphere,
m = mass of each stmall sphere,
d = distance from the rotation axis to the center of the small sphere,

R = distance between the centers of the large and small spheres.

Equating the gravitational torque to the restoring torque of the fiber (Kép) gives

16



G=K6pR?/(2Mm d). (18)
The torsion constant K can be determined from the equation for the oscillation frequency:
K=@n¥T2+b9) L (19)

For this balance the b? term is very small and can be ignored. The moment of inertia is the sum
of the moment of inertia of the two small spheres (Ig) plus the moment of inertia of the aluminum

beam (Iy,):

L=2md?+2/5mr)  Iy=my (2 +wp2)V12 (20)

where r = radius of the small sphere, and the aluminum beam is assumed to be a uniform
rectangle rotated about its center with mass my, length Iy, and width wy,.

Corrections:

The various assumptions that have been made in the above analysis introduce corrections to G
for the non-ideal actual balance. The largest of these is the correction for the gravitational
attraction of the large masses to the aluminum beam. A correction is also needed to account for
the gravitational attraction of the large masses to the distant small masses. These and other
corrections are discussed below,

1) Correction for the large sphere attraction to the distant small sphere.

The large spheres exert torques on the small spheres nearest them (Eq. 17), but they also exert
oppositely directed torques on the distant small spheres. Compared to the torque exerted on the
nearby sphere, this torque is reduced in magnitude both because the distant small spheres are
much further away, and the gravitational force is no longer perpendicular to the lever arm.
Including both effects, the torques exerted by the large spheres on the distant small spheres is
given by

2 spheres: 14=-2GMmd/R?fy (28)

17



where £g=£=R3/[R2+ )", 29)

For the Cavendish balance, fy = 3.5%.

2) Determining R:

To determine the separation R between the centers of the large and small spheres, it is easiest to
assume the boom has been oriented so that at equilibrium, it is parallel to the glass plates and
located midway between them. Ignoring the small rotation of the boom caused by the
gravitational torques exerted by the large spheres, when the large spheres are just touching the
glass windows R is given by

R=W/2+R[ (30)

where W is the separation of the two outer surfaces of the glass panes, and Ry is the radius of the
large spheres. In practice, the diameters of the two large spheres, D ; and Dy 5, are most easily

measured. Furthermore, due to machining tolerances in the balance frame and imperfections in
the surfaces of the large spheres, a small gap may exist between the surface of the glass window
and one large sphere when the other large sphere is making contact with the glass surface. To
account for these small gaps (typically less than 1 mm), it is convenient to average them and add
the average to the separation W between the two outer glass surfaces. If G1 and G2 are the sizes
of the gaps when the large spheres are in the two extreme positions, then R can be calculated
from

R = W/2 + (D y + Dy 9)/4 + (G1+G2)/2. 31)

Corrections for the assumption that at equilibrium the boom is oriented parallel to the glass
surfaces and midway between them turn out to be small. Suppose that the actual position of a
small sphere at the equilibrium position is displaced from the assumed central position by an
amount § in a direction perpendicular to the boom. In this case, when the large spheres are in
one position the true R will be smaller than the assumed R by the amount 8, but in the other
extreme position the true R will be larger than the assumed R by 8. Thus, the strength of the
gravitational force between the large and small spheres will be different for the two orientations
of the large spheres. If the method used to obtain G treats the two extreme positions
syminetrically, then the average of the two gravitational forces is the important quantity, and this
average is only weakly sensitive to &:

[ /R+8)2 + IR-8)2} /2 = /RZ[ 1 +3 (3/R)?]. (32)

18



For example, if & happens to be 3 mm, the correction to the average gravitational force from Eq.
33 for the Cavendish balance (R = 4.6 cm) is only 1.3%. When aligning the balance, the
equilibrium position of the boom should be adjusted to within this accuracy. Note that the above
argument assumes the two extreme positions of the large spheres are treated symmetrically. For
the driven oscillation method, this condition will be better satisfied as more oscillations are
averaged.

Corrections for the assumption that R (Eq. 32) doesn’t change during the measurement depends
on the method used to determine G. For the driven oscillation method averaged over many
cycles, for each position of the large spheres the boom moves in an approximately symmetric
manner with respect to the equilibrium position spending about equal amounts of time with R
both larger and smaller than the equilibrium value. Using an argument similar to the one given
above, the correction to G due to the assumption that R doesn’t change is small. This 1s not true
for the static method where G is determined from the change in the boom angle when the spheres
are moved from one extreme position to the other. For this method, a correction to G from this
effect of about 2% is required.

3) Correction for the gravitational torque exerted on the beam.

The aluminum beam can be approximated by a rectangle containing two holes that are used to
support the small spheres. The large spheres exert a torque on the beam but less effectively than
on the small spheres since much of the beam is further away from the center of the large spheres,
and the gravitational force is not at right angles to the lever arm about the rotation axis. To
estimate this torque, we will approximate the beam by a thin rod of length 1y, having negligible
thickness and width. If Am is the mass of a small piece of the rod located a distance x from the
axis of rotation, the gravitational torque exerted by one large sphere on the small piece is given

by
Aty =GM Amd/R*f (21)

where f is a factor which accounts for the reduction of the torque compared to the case where the
mass Am was located at the center of the nearby small sphere:

F=x/d*[1+((d- xR (22)

For regions near the position of the small sphere (x = d) f is approximately 1, but it dies away
rapidly as x moves away from the small sphere position so that for x = 1/2 d, £= 0.26, and for x
=-1/2d, £=-0.036. The average of f over the area of the holes for the small spheres is within

19



2% of 1. Thus, if we assume f=1 for the area of the holes, we will be making at most a 2% error
on an already small correction. In that case, the affect of the holes can be accounted for by

representing the beam by a uniform rod plus a point mass located at the center of the each hole
whose mass my, is equal to the mass of the aluminum removed to make the hole, but negative. In

other words, the value of the mass of the hole just subtracts from the mass of the small sphere
that sits in the hole. The value of my, can be calculated from the density of aluminum (p =2.70

g/cm3) and the dimensions of the hole (mp, = p V =0.34 g). Since the mass of the small spheres

is about 14.6 g, this represents a 2% adjustment to the mass of the small sphere.

The torque exerted by a large sphere on the (now holeless) aluminum beam can be calculated by
integrating Aty, (Eq. 22) over the length of the beam I

I sphere: 1, =GMmyd/R? (23)
f,=RR L (d(x'd) -1) A
dl 1+ [Mi]z R?
where R Xe (24)

and where x; and x4 are the positions of the two ends of the beam relative to the axis of rotation.
Assuming the beam is symmetrically placed so that x; = -1/2 and x;y = +1,/2, Eq. 25 becomes

szi_l_[“fd'(l”fd'} _1-dr-d )}

d 21| /141 +a p Ji+Q-dp (25)

where d’ = d/R and I’ = 1/(2R). For the Cavendish balance, I’ = 1.57, d’ = 1.44, and f, = 0.19.

Each large sphere exerts a torque on the beam, so the net torque exerted on the beam including
the effects of the holes is

2 spheres: 1, =2 GM (my, fy, - mp, ) d/RZ. (26)

The ratio of the torques exerted by the large spheres on the beam over that exerted by the large
spheres on the small masses is

T/ g = (mp f-mp ) /m 27

which is about 7%.

Combining the results discussed above yields the following equation for the total torque exerted
by the large spheres on the boom:

20



T=1, +Tq + T =2 G M [(m -mp)(1-£g) + myfiy] d /R (33)

Equating the total gravitational torque to the restoring torque of the fiber (Ky) gives
G=K6p R/ (2 M [(m -my,)(1-fg) + mpfy] d. (34)

This equation incorporates analysis of all errors mentioned thus far, and therefore is the
best equation to use to calculate G.
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Appendix 1:The Computerized Cavendish
Balance Software

INFORMATION BAR

Located at the top of the program window, the information bar contains three boxes. The
VALUE box monitors the output from the Cavendish unit. The ELASPED TIME box notes
the total time the experiment has run and the DATA box gives a read out of the data at the point
where the cursor is placed. This box is only active if the cursor is on the graph window.

VIEW RECORD BAR

The Cavendish program will record data in either a single pass or a continuous mode. The
VIEW RECORD bar describes the experimenta! set-up parameters. This bar will advise if the
data on the screen is “live” or if it is data loaded from a previous experiment. The frequency at
which data was taken, arid the number of data points taken are also shown

COMMENT BAR

The COMMENT bar is located immediately below the VIEW RECORD bar and any
comments about the experiment can be recorded here.

TOOL BAR

The Tool Bar just below the graph window allows the selection of the recording parameters.
Data can be taken at 5 different rates selectable in the SAMPLING RATE box. The NUMBER
OF POINTS box provides 7 “data widths” varying from 512 points to 32768 points and up to
19+ hours of recording time. The RANGE box has 6 different bipolar ranges from which
selections can be made. The SINGLE PASS option, if checked, stops the data collection after a
single pass. If that option is not checked then data is collected in the continuous mode.
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Just below the tool bar on the left of the screen are eight buttons. The extreme upper

left button is the EXAMINE DATA button. When this button is selected, a time and angle will
be visible in the INFORMATION BAR.

Both the X and Y-axis can be “zoomed” by selecting the appropriate button, located to the right
of the EXAMINE DATA button. After selecting the X or Y axis to zoom place the cursor in the
active screen area and left click the mouse. To “unzoom” choose the appropriate box and lefi
click the mouse and the screen will return to show the original experimental data. Note. the
maximum zoom is 512 points in time by approximately 1.5 milliradians.

The CONNECT DATA button on the lower left is a toggle that shows the data as a

collection of data points or shows the individual data points connected.

At the far right of the toolbar are the SELECT POINTS and APPLY CORRECTION buttons.
In the top row, the SELECT POINTS button allows you to select one, two, or three points on
the graph to define an offset, linear function, or quadratic curve. These can then be used to
correct any drift that may become evident on long runs. We have empirically determined that
changes in humidity are the main cause of drift. To select points first press the SELECT
POINTS button. Then click on the graph window and select P1 from the pop up menu. Now
select the first point to use for your drift correction. Repeat this process twice more to select
points P2 and P3, if you want a higher-order correction.

Simply press the APPLY CORRECTION button to see the experimental data corrected with
the offset, linear function, or quadratic curve, If you are not satisfied with the correction, there
are two methods to adjust the correction. The first involves selecting new points to use for the
correction. Deselect APPLY CORRECTION by clicking it again. Now, click on the graph
window to select a new point for P1, P2, or P3. Click APPLY CORRECTION to see how the
correction has changed. The second method of adjusting the correction involves adjusting the
function coefficients directly. Click on the graph window, and select “set coef.” from the pop up
menu. You may now type in new values for A, B, and C. Click “OK” and then on the graph
window again. Now click on “Manual Coefficients OFF” to toggle manual Coefficients on and
see the data corrected using the values you entered. You may now continue to change the
coefficients until you are satisfied with the fit.
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LOW PASS FILTER

The LPF TIME CONSTANT box allows the user to select 12 different Low Pass
Filters’s or to select no Low Pass Filter at all. This mode should seldom if ever have to
be used. Start out all experiments with the NO LPF option. The common mode
rejection of this unit is exceptional. For example if the small boom moves significantly
in any motion other than a rotational movement the common mode rejection should
prevent most all motion except the rotational motion to be recorded. If you find that this

is the not case then the LPF may be of help.

RESET BUTTON

After completing a run, experimental parameters can be changed by selecting different sampling
rates, number of data points, modes etc. Clicking on the RESET button will cause these
changes to become effective.

RECORD BUTTON

To start taking data press RECORD. Any time a run is stopped, either manually or
automatically, a warning box will pop up asking if you want to save the data before continuing.

SAVE/LOAD BUTTONS

Data can be saved by clicking on the SAVE button. The default format for saving data is *.cav.
Two other formats (*.txt and *.xIs) can be chosen. The latter two formats are convenient for
exporting data to a spreadsheet for further analysis. The LOAD button allows one to load
previously taken data. The program also creatcs a temp.cav file after about 2 minutes of data
taking. Thereafter data is periodically saved in this temporary file. “This is of use if, for example,
the power were to go off while you were taking data over a long period of time. If that were to
happen then you can recover the data up to the time in which the computer “crashed”. This file
is overwritten each time a new data run begins.
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PRINT BUTTON

Data can be printed by selecting the PRINT button. The graph on the screen will be printed. In
addition, the sample rate, number of points and file name will also be noted on the printed graph.
The comments made in the COMMENT bar will also be printed if that option is chosen.

SET-UP BUTTON

This button allows you to set the min/max boundaries of the Cavendish unit.

“Y minimum” and “Y maximum” adjust the full scale range of the unit. By adjusting these (as
discussed under Calibration on page 6) the balance output can me made to match the angle as
measured with an optical lever.

The buttons “Adjust left border” and “Adjust right border” will each adjust the scale of the
readout to make the current boom position correspond with the top (adjust right border) or
bottom (adjust left border) edge of the screen.

The boom has been designed with tabs on the ends so that it is always rotating in a linear region
of the capacitor plates. The total swing possible for the boom is 150 milliradians. The program
however, cuts off any reading above +60 or below -60 millradians. Since the boom will only be
swinging a few milliradians when performing the experiment, this cut off should not affect
results.

Diagram 6 shows the dimensions of the Cavendish unit. From these dimensions, it is easy to
calculate the maximum angle the boom can rotate. 6 = ((30-18.7)/2)/(150/2) = .075 rad

4 150 mm >
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ZERO SETTING

The button just to the right of “RESET” sets the zero point of the boom. The Zero Point of the
boom’s swing will be at the point where the button was pressed. To set the zero point place the
boom in the center of the plates. You can usc the centering pin to temporarily hold the boom in
place. Press the zero point button. The geometric center of the plates has now been established
and the output will be read as milliradians on either side of this zero point.

EXIT BUTTON

The program will be closed if the EXIT button is selected.
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